Пояснительная записка к рабочей программе по математике



Скачать 320.22 Kb.
Дата22.05.2015
Размер320.22 Kb.
ТипПояснительная записка

Пояснительная записка

к рабочей программе по математике

10 класса (профильный уровень) на 2014 – 2015 учебный год

Рабочая программа учебного курса по математике для 10 класса разработана на основе Примерной программы среднего(полного) общего образования (профильный уровень) с учетом требований федерального компонента государственного стандарта среднего(полного) общего образования и с учетом программ для общеобразовательных школ с использованием рекомендаций авторских программ Ю.М. Колягина, Л.С. Атанасяна.

Реализация рабочей программы осуществляется с использованием учебников:

ü Учебник для 10 класса общеобразовательных учреждений. Базовый и профильный уровень. Алгебра и начала математического анализа. Авторы: Ю.М. Колягин, М.В. Ткачёва, Н.Е. Фёдорова, М.И. Шабунин. Под редакцией А.Б. Жижченко. Москва. Просвещение.2014

ü Учебник для общеобразовательных учреждений: базовый и профильный уровни. Геометрия. 10-11 классы. Авторы: Л.С. Атанасян, В.Ф, Бутузов, с.Б. Кадомцев и др. Москва. Просвещение.2010




Данная рабочая программа рассчитана на 204 часа из расчета 6 часов в неделю.

Программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Программа включает три раздела: пояснительную записку; основное содержание с распределением учебных часов по разделам курса; требования к уровню подготовки выпускников.

Цель программы:

· формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

· овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;

· развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

· воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

Задачи учебного предмета.


Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы ком­бинаторики, теории вероятностей, статистики и логи­ки. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать по­ставленные перед школьным образованием цели на информаци­онно емком и практически значимом материале. Эти содер­жательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодейству­ют в учебных курсах.

В рамках указанных содержательных линий решаются следующие задачи:

· систематизация сведений о числах; изучение новых видов числовых выражений и формул;

· совершенствование практических навыков и вычислительной культуры; приобретение прак­тических навыков, необходимых для повседневной жизни;

· формирование математического аппа­рата для решения задач из математики, смежных предметов, окружающей реальности;

· развитие алгоритмического мышле­ния, необходимого, в частности, для освоения курса информати­ки; овладение навыками дедуктивных рассуждений;

· развитие воображения, способностей к математическому творче­ству;

· важной задачей изучения алгебры является получе­ние школьниками конкретных знаний о функциях как важней­шей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экс­поненциальных, периодических и др.), для формирования у уча­щихся представлений о роли математики в развитии цивилиза­ции и культуры;

· формирование функциональной грамотности — умений вос­принимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятност­ные расчеты в простейших прикладных задачах.

Нормативное обеспечение программы:

1.Закон об образовании РФ.

2.Федеральный компонент государственного стандарта общего образования. Стандарт основного общего образования по математике.

3.Обязательный минимум содержания основного общего образования по предмету.

4.Программы общеобразовательных учреждений. Алгебра и начала анализа 10-11 класс. Составитель Бурмистрова Т. А. – М.: Просвещение, 2012.

5.Программа для общеобразовательных школ с использованием рекомендаций авторских программ Ю.М. Колягина, Л.С. Атанасяна.
Место предмета в федеральном базисном учебном плане.

Количество учебных часов по алгебре и началам анализа:

В год –136 часов.

Контрольных работ – 10

Формы промежуточной и итоговой аттестации: контрольные работы, тесты, самостоятельные работы, зачёты.

Количество учебных часов по геометрии:

В год-68 часов.

Контрольных работ -5.

Формы промежуточной и итоговой аттестации: контрольные работы, тесты, самостоятельные работы, зачёты

В программу внесены изменения: после контрольной работы проводится анализ контрольной работы, количество часов, отведённых на главу, не изменено.

Программа используется без изменений её содержания.

Уровень обучения – профильный.
Содержание курса алгебры и начала анализа 10 класса включает следующие тематические блоки:



Тема

Количество часов

Контрольных работ

1

Действительные числа.Степень с действительным показателем.

14

1

2

Показательная функция.

8

1

3

Степенная функция

14

1

4

Логарифмическая функция

21

1

5

Системы уравнений

14

1

6

Тригонометрические формулы

30

2

7

Тригонометрические уравнения

29

2

8

Повторение

6

1




Итого

136ч

10

Содержание обучения

Алгебра и начала анализа
1. Степень с действительным показателем – 14 часов

Действительные числа. Бесконечно убывающая геомет­рическая прогрессия. Арифметический корень натураль­ной степени. Степень с натуральным и действительным по­казателями.

Основная цель — обобщить и систематизировать знания о действительных числах; сформировать понятие степени с действительным показателем; научить применять определения арифметического корня и степени, а также их свойства при выполнении вычислений и преобразовании выражений; ознакомить с понятием предела последова­тельности1.

Необходимость расширения множества натуральных чисел до действительных мотивируется возможностью вы­полнять действия, обратные сложению, умножению и воз­ведению в степень, а значит, возможностью решать уравне­ния х + а = Ь, ах = Ь, ха = b.

Рассмотренный в начале темы способ обращения беско­нечной периодической десятичной дроби в обыкновенную обосновывается свойствами сходящихся числовых рядов, в частности, нахождением суммы бесконечно убывающей геометрической прогрессии.

Действия над иррациональными числами строго не опре­деляются, а заменяются действиями над их приближенны­ми значениями — рациональными числами.

В связи с рассмотрением последовательных рациональ­ных приближений иррационального числа, а затем и степе­ни с иррациональным показателем на интуитивном уровне вводится понятие предела последовательности. Формулиру­ется и строгое определение предела. Разбирается задача на доказательство того, что данное число является пре­делом последовательности с помощью определения преде-

ла. На данном этапе элементы теории пределов не изуча­ются.

Арифметический корень натуральной степени п > 2 из неотрицательного числа и его свойства излагаются тради­ционно. Учащиеся должны уметь вычислять значения кор­ня с помощью определения и свойств и выполнять преобра­зования выражений, содержащих корни.

2. Показательная функция – 8 часов

Показательная функция, ее свойства и график. Показа­тельные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств.

Основная цель — изучить свойства показательной функции; научить решать показательные уравнения и не­равенства, системы показательных уравнений.

Свойства показательной функции у = ах полностью сле­дуют из свойств степени с действительным показателем. Например, возрастание функции у — ах, если а > 1, следует из свойства степени: «Если хх < х2, то aXl < аХг при а > 1».

Решение большинства показательных уравнений и не­равенств сводится к решению простейших.

Так как в ходе решения предлагаемых в этой теме пока­зательных уравнений равносильность не нарушается, то проверка найденных корней необязательна. Здесь системы уравнений и неравенств решаются с помощью равносиль­ных преобразований: подстановкой, сложением или умно­жением, заменой переменных и т. д.
3. Степенная функция – 14 часов

Степенная функция, ее свойства и график. Взаимно обратные функции. Сложные функции. Дробно-линейная функция. Равносильные уравнения и неравенства. Ирра­циональные уравнения. Иррациональные неравенства.

Основная цель — обобщить и систематизировать известные из курса алгебры основной школы свойства функций; изучить свойства степенных функций и научить применять их при решении уравнений и неравенств; сфор­мировать понятие равносильности уравнений, неравенств, систем уравнений и неравенств.

Рассмотрение свойств степенных функций и их графи­ков проводится поэтапно, в зависимости от того, каким числом является показатель: 1) четным натуральным чис­лом; 2) нечетным натуральным числом; 3) числом, про­тивоположным четному натуральному числу; 4) числом, противоположным нечетному натуральному числу; 5) по­ложительным нецелым числом; 6) отрицательным неце­лым числом.

Обоснования свойств степенной функции не проводят­ся, они следуют из свойств степени с действительным по­казателем. Например, возрастание функции у = хр на про­межутке х > О, где р — положительное нецелое число, следует из свойства: «Если 0 < х1 < х2, р > 0, то xf < x.f». На примере степенных функций учащиеся знакомятся с понятием ограниченной функции, учатся доказывать как ограниченность, так и неограниченность функции.

Рассматриваются функции, называемые взаимно обрат­ными. Важно обратить внимание на то, что не всякая функ­ция имеет обратную. Доказывается симметрия графиков взаимно обратных функции относительно прямой у = х.

Знакомство со сложными и дробно-линейными функ­циями начинается сразу после изучения взаимно обратных функций. Вводятся разные термины для обозначения сложной функции (суперпозиция, композиция), но употребля­ется лишь один. Этот материал в классах базового уровня изучается лишь в ознакомительном плане. Обращается внимание учащихся на отыскание области определения сложной функции и промежутков ее монотонности. Дока­зывается теорема о промежутках монотонности с опо­рой на определения возрастающей или убывающей функ­ции, что позволяет изложить суть алгоритма доказа­тельства монотонности сложной функции.

Учащиеся знакомятся с дробно-линейными функция­ми. В основной школе учащиеся учились строить график

функции у = k/x и графики функций, которые получались

сдвигом этого графика. Выделение целой части из дробно-линейного выражения приводит к знакомому учащимся виду функции.

Определения равносильности уравнений, неравенств и систем уравнений и свойств равносильности дается в связи с предстоящим изучением иррациональных уравнений, не­равенств и систем иррациональных уравнений.

Основным методом решения иррациональных уравнений является возведение обеих частей уравнения в степень с целью перехода к рациональному уравнению-следствию данного.

С помощью графиков решается вопрос о наличии кор­ней и их числе, а также о нахождении приближенных кор­ней, если аналитически решить уравнение трудно.

Изучение иррациональных неравенств не является обя­зательным для всех учащихся. При их изучении на базо­вом уровне основным способом решения является сведение неравенства к системе рациональных неравенств, равно­сильной данному. После решения задач по данной теме учащиеся выводятся на теоретическое обобщение реше­ния иррациональных неравенств, содержащих в условии единственный корень второй степени.

4. Логарифмическая функция – 21 часов

Логарифмы. Свойства логарифмов. Десятичные и нату­ральные логарифмы. Логарифмическая функция, ее свой­ства и график. Логарифмические уравнения. Логарифми­ческие неравенства.

Основная цель — сформировать понятие логариф­ма числа; научить применять свойства логарифмов при ре­шении уравнений; изучить свойства логарифмической функции и научить применять ее свойства при решении логарифмических уравнений и неравенств.

До этой темы в курсе алгебры изучались такие функ­ции, вычисление значений которых сводилось к четырем арифметическим действиям и возведению в степень. Для вычисления значений логарифмической функции нужно уметь находить логарифмы чисел, т. е. выполнять новое для учащихся действие — логарифмирование.

При знакомстве с логарифмами чисел и их свойствами полезны подробные и наглядные объяснения даже в про­фильных классах.

Доказательство свойств логарифма опирается на его определение. На практике рассматриваются логарифмы по различным основаниям, в частности по основанию 10 (де­сятичный логарифм) и по основанию е (натуральный лога­рифм), отсюда возникает необходимость формулы перехода от логарифма по одному основанию к логарифму по друго­му основанию. Так как на инженерном микрокалькулято­ре есть клавиши lg и In, то для вычисления логарифма по основаниям, отличным от 10 и е, нужно применить форму­лу перехода.

Свойства логарифмической функции активно использу­ются при решении логарифмических уравнений и нера­венств.

Изучение свойств логарифмической функции проходит совместно с решением уравнений и неравенств.

При решении логарифмических уравнений и неравенств выполняются различные их преобразования. При этом час­то нарушается равносильность. Поэтому при решении лога­рифмических уравнений необходимо либо делать проверку найденных корней, либо строго следить за выполненными преобразованиями, выявляя полученные уравнения-следствия и обосновывая каждый этап преобразования. При решении логарифмических неравенств нужно следить за тем, чтобы равносильность не нарушалась, так как провер­ку решения неравенства осуществить сложно, а в ряде слу­чаев невозможно. 5.Системы уравнений-14 часов

Многочлены от одного переменного. Схема Горнера. Многочлен Р (х) и его корень. Теорема Безу. Следствия из теоремы Безу. Алгебраические уравнения. Делимость дву­членов хт ± ат на х ± а. Симметрические многочлены.

Многочлены от нескольких переменных. Формулы сокра­щенного умножения для старших степеней. Бином Нью­тона. Системы уравнений.

Основная цель — обобщить и систематизировать знания о многочленах, известные из основной школы; на­учить выполнять деление многочленов, возведение двучле­нов в натуральную степень, решать алгебраические уравне­ния, имеющие целые корни, решать системы уравнений, содержащие уравнения степени выше второй; ознакомить с решением уравнений, имеющих рациональные корни.

Продолжается изучение многочленов, алгебраических уравнений и их систем, которые рассматривались в школь­ном курсе алгебры. От рассмотрения линейных и квадрат­ных уравнений учащиеся переходят к алгебраическим уравнениям общего вида Рп(х) = О, где Рп(х) — многочлен степени п. В связи с этим вводятся понятия степени много­члена и его корня.

Отыскание корней многочлена осуществляется разло­жением его на множители. Для этого сначала подробно рассматривается алгоритм деления многочленов уголком, который использовался в арифметике при делении рацио­нальных чисел.

На конкретных примерах показывается, как получает­ся формула деления многочленов Р(х) = М(х) Q(x) и как с ее помощью можно проверить результаты деления много­членов. Эта формула принимается в качестве определения операции деления многочленов по аналогии с делением на­туральных чисел, с которым учащиеся знакомились в кур­се арифметики.

Деление многочленов обычно выполняется уголком или по схеме Горнера. Иногда это удается сделать разложением делимого и делителя на множители. Схема Горнера не яв­ляется обязательным материалом для всех учащихся, но, как показывает опыт, она легко усваивается и ее можно рассмотреть, не требуя от всех умения ее применять. Мож­но также использовать метод неопределенных коэффици­ентов.

Способ решения алгебраического уравнения разложени­ем его левой части на множители фактически опирается на следствия из теоремы Безу: «Если хг — корень уравнения Рп(х) = О, то многочлен Рп(х) делится на двучлен х - хг». Изучается теорема Безу, формулируются следствия из нее, являющиеся необходимым и достаточным условием деле­ния многочлена на двучлен.

Рассматривается первый способ нахождения целых кор­ней алгебраического уравнения с целыми коэффициентами, если такие корни есть: их следует искать среди делителей свободного члена. Для учащихся, интересующихся матема­тикой, приводится пример отыскания рациональных кор-

ней многочлена с первым коэффициентом, отличным от 1. Среди уравнений, сводящихся к алгебраическим, рассмат­риваются рациональные уравнения. Хотя при решении ра­циональных уравнений могут появиться посторонние кор­ни, они легко обнаруживаются проверкой. Поэтому поня­тия равносильности и следствия уравнения на этом этапе не являются необходимыми; эти понятия вводятся позже при рассмотрении иррациональных уравнений и неравенств.

Решение систем нелинейных уравнений проводится как известными учащимся способами (подстановкой или сло­жением), так и делением уравнений и введением вспомога­тельных неизвестных.
6. Тригонометрические формулы- 30 часов

Радианная мера угла. Поворот точки вокруг начала ко­ординат. Определение синуса, косинуса и тангенса угла. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов ос и -а. Формулы сложения. Синус, косинус и тан­генс двойного угла. Синус, косинус и тангенс половинного угла. Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов. Произведение синусов и коси­нусов.

Основная цель — сформировать понятия синуса, косинуса, тангенса, котангенса числа; научить применять формулы тригонометрии для вычисления значений триго­нометрических функций и выполнения преобразований тригонометрических выражений; научить решать простей­шие тригонометрические уравнения sinx = a, cosx = а при а = 1, -1, 0.

Рассматривая определения синуса и косинуса действи­тельного числа а, естественно решить самые простые урав­нения, в которых требуется найти число а, если синус или косинус его известен, например уравнения sin a = 0, cos а = 1 и т. п. Поскольку для обозначения неизвестного по традиции используется буква х, то эти уравнения записыва­ют как обычно: sinx = 0, cosx= 1 и т. п. Решения этих уравнений находятся с помощью единичной окружности.

При изучении степеней чисел рассматривались их свой­ства ap + q = ар aq, ap~q = ар : aq. Подобные свойства спра­ведливы и для синуса, косинуса и тангенса. Эти свойства называют формулами сложения. Практически они выражают зависимость между координатами суммы или разно­сти двух чисел а и Р через координаты чисел а и (3. Фор­мулы сложения доказываются для косинуса суммы или разности, все остальные формулы сложения получаются как следствия..

Формулы сложения являются основными формулами тригонометрии, так как все другие можно получить как следствия: формулы двойного и половинного углов (для классов базового уровня не являются обязательными), фор­мулы приведения, преобразования суммы и разности в про­изведение. Из формул сложения выводятся и формулы за­мены произведения синусов и косинусов их суммой, что применяется при решении уравнений.
7. Тригонометрические уравнения – 29 часов

Уравнения cosx = a, sinx = a, tgx = а. Тригонометриче­ские уравнения, сводящиеся к алгебраическим. Однородные и линейные уравнения. Методы замены неизвестного и раз­ложения на множители. Метод оценки левой и правой час­тей тригонометрического уравнения. Системы тригоно­метрических уравнений. Тригонометрические неравенства.

Основная цель (базовый уровень) — сформировать умение решать простейшие тригонометрические уравне­ния; ознакомить с некоторыми приемами решения тригоно­метрических уравнений.

Основная цель (профильный уровень) — сформиро­вать понятия арксинуса, арккосинуса, арктангенса числа; научить решать тригонометрические уравнения и систе­мы тригонометрических уравнений, используя различные приемы решения; ознакомить с приемами решения триго­нометрических неравенств.

Как и при решении алгебраических, показательных и логарифмических уравнений, решение тригонометриче­ских уравнений путем различных преобразований сводится к решению простейших: cosx = a, sinx = a, tgx = a.

Рассмотрение простейших уравнений начинается с урав­нения cosx = а, так как формула его корней проще, чем формула корней уравнения sin x = а (в их записи часто ис­пользуется необычный для учащихся указатель знака (-1)п). Решение более сложных тригонометрических уравнений, когда выполняются алгебраические и тригонометрические преобразования, сводится к решению простейших.

Рассматриваются следующие типы тригонометрических уравнений: линейные относительно sinx, cosx или tgx; сводящиеся к квадратным и другим алгебраическим урав­нениям после замены неизвестного; сводящиеся к простей­шим тригонометрическим уравнениям после разложения на множители.

На профильном уровне дополнительно изучаются одно­родные (первой и второй степеней) уравнения относи­тельно sinx и cosx, а также сводящиеся к однородным уравнениям. При этом используется метод введения вспо­могательного угла.

При углубленном изучении рассматривается метод предварительной оценки левой и правой частей уравне­ния, который в ряде случаев позволяет легко найти его корни или установить, что их нет.

На профильном уровне рассматриваются тригономет­рические уравнения, для решения которых необходимо применение нескольких методов. Показывается анализ уравнения не по неизвестному, а по значениям синуса и ко­синуса неизвестного, что часто сужает поиск корней уравнения. Также показывается метод объединения се­рий корней тригонометрических уравнений. Разбираются подходы к решению несложных систем тригонометриче­ских уравнений.

Рассматриваются простейшие тригонометрические неравенства, которые решаются с помощью единичной окружности.

Требования к уровню подготовки учащихся

В результате изучения математики на профильном уровне в старшей школе ученик должен

знать/понимать:

значение математической науки для решения задач, воз­никающих в теории и практике; широту и ограничен­ность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

значение практики и вопросов, возникающих в самой математике, для формирования и развития математиче­ской науки;

идеи расширения числовых множеств как способа по­строения нового математического аппарата для решения практических задач и внутренних задач математики;

значение идей, методов и результатов алгебры и матема­тического анализа для построения моделей реальных процессов и ситуаций;

возможности геометрического языка как средства опи­сания свойств реальных предметов и их взаимного рас­положения;

универсальный характер законов логики математиче­ских рассуждений, их применимость в различных обла­стях человеческой деятельности;

различие требований, предъявляемых к доказательст­вам в математике, естественных, социально-экономиче­ских и гуманитарных науках, на практике;

роль аксиоматики в математике; возможность построе­ния математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;

вероятностный характер различных процессов и законо­мерностей окружающего мира.

В результате изучения курса алгебры и начал анализа учащиеся 11 классов должны

уметь:

§ находить значения корня, степени, логарифма с помощью таблиц;

§ выполнять тождественные преобразования иррациональных, показательных, логарифмических выражений;

§ решать иррациональные, показательные, логарифмические уравнения;

§ иметь представление о графическом способе решения уравнений и неравенств;

§ решать иррациональные, показательные, логарифм и неравенства;

§ иметь наглядные представления об основных свойствах функции, иллюстрировать их с помощью графических изображений;

§ изображать графики основных элементарных функций; опираясь на график, описывать свойства этих функций; уметь использовать свойства функции для уравнения и оценки её значений;

использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:

§ решения прикладных задач, в том числе социально-экономических физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

§ построения и исследования простейших математических моделей;

§ анализа реальных числовых данных, представленных в виде диаграмм, графиков;

§ анализа информации статистического характера;

§ описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.
Результаты обучения

Числовые и буквенные выражения, уметь:

· выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

· применять понятия, связанные с делимостью целых чисел, при решении математических задач;

· находить корни многочленов с одной переменной, раскладывать многочлены на множители;

· выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;

· проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

· использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Функции и графики, уметь:

· определять значение функции по значению аргумента при различных способах задания функции;

· строить графики изученных функций, выполнять преобразования графиков;

· описывать по графику и по формуле поведение и свойства функций;

· решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;

· использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов;

Начала математического анализа, уметь:

· находить сумму бесконечно убывающей геометрический прогрессии;

· вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы;

· исследовать функции и строить их графики с помощью производной;

· решать задачи с применением уравнения касательной к графику функции;

· решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;

· вычислять площадь криволинейной трапеции;

· использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа;

Уравнения и неравенства, уметь:

· решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;

· доказывать несложные неравенства;

· решать текстовые задачи с помощью составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;

· изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

· находить приближенные решения уравнений и их систем, используя графический метод;

· решать уравнения, неравенства и системы с применением графических представлений, свойств функций;

· использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: построения и исследования простейших математических моделей;

Литература
1.Колягин Ю.М. и др.Алгебра и начала математического анализа. Учебник для 10 класса общеобразовательных учреждений. Базовый и профильный уровень. Москва. Просвещение.2014
2. Алимов Ш.А. Алгебра и начала анализа. Учебник для 10-11 классов общеобразовательных учреждений. М., «Просвещение», 2010.
3. Бурмистрова Т.А. Алгебра и начала математического анализа. 10 - 11 классы. Программы общеобразовательных учреждений. М., «Просвещение», 2009.
4. Звавич Л.И. и др. Алгебра и начала анализа: 3600 задач для школьников и поступающих в вузы. М.: Дрофа, 1999.
5. Сканави М.И. Сборник задач по математике для поступающих в вузы. Книга 1. Алгебра. М. : ОНИКС 21 век, Мир и образование, 2003.
6. Федеральный компонент государственного стандарта среднего (полного) общего образования по математике //«Вестник образования» -2004 - № 14 - с.107-119.

Похожие:

Пояснительная записка к рабочей программе по математике iconПояснительная записка к рабочей программе по математике в 6 классе

Пояснительная записка к рабочей программе по математике iconПояснительная записка к рабочей программе по математике обучающихся 3 класса Б

Пояснительная записка к рабочей программе по математике iconРабочая программа по предмету математика для
Пояснительная записка к рабочей программе учебного курса по математике для 10 класса
Пояснительная записка к рабочей программе по математике iconПрограмма по математике 8 класс (viiiвид) на 2013-2014 год. Пояснительная записка к рабочей программе по математике, реализуемой в 8 классе VIII вида
Х-хii классов с углубленной трудовой подготовкой в специальных (коррекционных) образовательных учреждениях VIII вида М., Просвещение...
Пояснительная записка к рабочей программе по математике iconПояснительная записка к рабочей программе по математике 5 класс
Данная учебная программа по математике для 5 класса разработана на основе Примерной программы основного общего образования, с учетом...
Пояснительная записка к рабочей программе по математике iconПояснительная записка к рабочей программе

Пояснительная записка к рабочей программе по математике iconПояснительная записка к рабочей программе

Пояснительная записка к рабочей программе по математике iconПояснительная записка к рабочей программе по обществознанию

Пояснительная записка к рабочей программе по математике iconПояснительная записка к рабочей программе учебного

Пояснительная записка к рабочей программе по математике iconПояснительная записка к рабочей программе по географии 6-9 класса

Разместите кнопку на своём сайте:
docs.likenul.com


База данных защищена авторским правом ©docs.likenul.com 2015
обратиться к администрации
docs.likenul.com