Программа по математике среднего (полного) общего образования



Скачать 298,41 Kb.
Дата22.05.2015
Размер298,41 Kb.
ТипПрограмма

c:\users\пользователь1\pictures\2015-03-11\scan1.jpg

Рабочая программа по математике среднего (полного) общего образования (базовый уровень)

  1. Пояснительная записка

При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:

систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;

развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;

знакомство с основными идеями и методами математического анализа.


Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.


Целью изучения курса алгебры и начала анализа в 10-11 классах является:

  • систематическое изучение функций как важнейшего математического объекта средствами алгебры и математического анализа;

  • раскрытие политехнического и прикладного значения общих методов математики, связанных с исследованием функций;

  • интеллектуальное развитие, формирование уровня абстрактного и логического мышления и алгоритмической культуры, необходимого для обучения в высшей школе и будущей профессиональной деятельности;

  • подготовка необходимого аппарата для изучения геометрии и физики.

В этом курсе из основных содержательно-методических линий, в качестве приоритетной, выбрана функционально-графическая линия. Это прежде всего выражается в том, что какой бы класс функций, уравнений, выражений не изучался, построение материала практически всегда осуществляется по жесткой системе: функция – уравнения – преобразования.

Стержневой идеей курса алгебры и начала анализа является развитие умений школьников составлять математические модели реальных ситуаций, для чего необходимо овладение языком математического моделирования.

Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках и применять нужные формулы, владеть практическими приемами геометрических измерений и построений. Все больше специальностей, требующих высокого уровня образования, связано с непосредственным применением математики. В ходе решения задач – основной учебной деятельности на уроках геометрии – развиваются творческая и прикладная стороны мышления. Изучение геометрии развивает воображение, пространственные представления.

Цель изучения курса геометрии:


  • систематическое изучение свойств геометрических тел в пространстве

  • развитие пространственных представлений учащихся,

  • представление о геометрических свойствах реальных предметов (их форма, взаимное расположение и т.д.) и использование этих свойств в практической деятельности,

  • освоение способов вычисления практически важных геометрических величин,

  • использование языка геометрии для описания предметов окружающего мира;

  • дальнейшее развитие логического мышления учащихся.

В 10 классе изучается взаимное расположение прямых и плоскостей, многогранники и векторы в пространстве, а в 11 классе – метод координат в пространстве, «круглые» геометрические тела – цилиндр, конус, шар и рассматривается вопрос об объемах тел.

Преподавание геометрии осуществляется по учебнику автора Л.С. Атанасяна «Геометрия 10 – 11 класс».


Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.
Результаты обучения

Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/пони-мать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние две компоненты представлены отдельно по каждому из разделов, содержания.

Программа по математике составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования, примерной программы среднего (полного) общего образования по математике для 10-11 классов, рекомендованной Министерством образования и науки Российской Федерации и Программы « Алгебра и начала математического анализа» 10-11 класс, автор А.Г. Мордкович, изд. Мнемозина, Программы «Геометрия» 10-11 класс, автор Л.С. Атанасян, изд. Просвещение
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе среднего (полного) общего образования отводится не менее 280 часов из расчета 4 часа в неделю. При этом предполагается построение курса в форме последовательности тематических блоков с чередованием материала по алгебре, анализу, дискретной математике, геометрии.

В учебном плане МБОУО гимназии №3 на изучение математики на этапе среднего (полного) общего образования отводится 280 часов из расчета 4 часа в неделю.


Рабочая программа по математике представляет собой целостный документ, включающий в себя: пояснительную записку; тематический план; основное содержание всех тем с примерным распределением учебных часов по основным разделам курса; требования к уровню подготовки учащихся, учебно-методический комплект, информационно-методические источники

  1. Тематический план

Блоки

Номер темы

Название темы

Количество часов на изучение темы

10 класс

11 класс

Блок алгебры и начал анализа (всего 180 ч)

1

Алгебра.

46







Корни и степени.







10

Логарифм.







5

Преобразования простейших выражений:

тригонометрические выражения,

выражения с радикалами,

логарифмические выражения,







11


9

2


Основы тригонометрии




9




2

Функции

28







Числовые функции




5




Тригонометрические функции




14




Степенные функции







4

Показательная и логарифмическая функции







5

3

Начала математического анализа

38







Производная. Применение производной.




28

3

Интеграл. Применение интеграла.







7

4

Уравнения и неравенства.

36







Тригонометрические уравнения и неравенства




9




Показательные уравнения и неравенства







4

Логарифмические уравнения и неравенства







7




Уравнения и неравенства. Системы уравнений и неравенств. Равносильность уравнений. Уравнения и неравенства с одной и двумя переменными. Уравнения и неравенства с параметрами.







16




5

Элементы математической статистики, комбинаторики и теории вероятностей

11




11




6

Итоговое повторение

5




5

Блок геометрии (99ч)

7

Введение. Аксиомы стереометрии и их следствия. Параллельность и перпендикулярность прямых и плоскостей.

36

36




8

Многогранники

14

14




9

Тела и поверхности вращения.

6




6

10

Объемы тел и площади их поверхностей.

18




18

11

Координаты и векторы в пространстве.

18

6

12

12

Итоговое повторение

8




8

Резерв




4

4




итого




268

136

132



  1. Основное содержание всех тем

АЛГЕБРА

Корни и степени. Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем1. Свойства степени с действительным показателем.

Логарифм. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.

Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.

Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений.

Простейшие тригонометрические уравнения. Решения тригонометрических уравнений. Простейшие тригонометрические неравенства.



Арксинус, арккосинус, арктангенс числа.

ФУНКЦИИ

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

Обратная функция. Область определения и область значений обратной функции. График обратной функции.

Степенная функция с натуральным показателем, ее свойства и график.



Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.

Тригонометрические функции, их свойства и графики; периодичность, основной период.

Показательная функция (экспонента), ее свойства и график.

Логарифмическая функция, ее свойства и график.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

Понятие о непрерывности функции.

Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные элементарных основных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции данной функции с линейной.



Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница.

Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.



УРАВНЕНИЯ И НЕРАВЕНСТВА

Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных уравнений.

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

Табличное и графическое представление данных. Числовые характеристики рядов данных.

Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.

Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.



ГЕОМЕТРИЯ

Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство).

Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.

Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.

Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.

Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.

Сечения куба, призмы, пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).



Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.



Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.



Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.


Основное содержание тем в 10 классе

АЛГЕБРА

Преобразования простейших выражений, включающих арифметические операции с тригонометрическими выражениями.

Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений.

Простейшие тригонометрические уравнения. Решения тригонометрических уравнений. Простейшие тригонометрические неравенства.



Арксинус, арккосинус, арктангенс числа.

ФУНКЦИИ

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

Обратная функция. Область определения и область значений обратной функции. График обратной функции.

Степенная функция с натуральным показателем, ее свойства и график.



Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.

Тригонометрические функции, их свойства и графики; периодичность, основной период.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

Понятие о непрерывности функции.

Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные элементарных основных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции данной функции с линейной.

Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.

УРАВНЕНИЯ И НЕРАВЕНСТВА

Решение рациональных уравнений и неравенств.

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

ГЕОМЕТРИЯ

Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство).

Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.

Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.

Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.

Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.

Сечения куба, призмы, пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).



Координаты и векторы. Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам.
Основное содержание тем в 11 классе
АЛГЕБРА

Корни и степени. Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем2. Свойства степени с действительным показателем.

Логарифм. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.

Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.

ФУНКЦИИ

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

Обратная функция. Область определения и область значений обратной функции. График обратной функции.

Степенная функция с натуральным показателем, ее свойства и график.



Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.

Показательная функция (экспонента), ее свойства и график.

Логарифмическая функция, ее свойства и график.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.



НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные элементарных основных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции данной функции с линейной.



Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница.

Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.



УРАВНЕНИЯ И НЕРАВЕНСТВА

Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных уравнений.

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

Табличное и графическое представление данных. Числовые характеристики рядов данных.

Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.

Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.



ГЕОМЕТРИЯ

Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.



Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.



Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Компланарные векторы. Разложение по трем некомпланарным векторам.




  1. Требование уровня подготовки выпускников


В результате изучения математики на базовом уровне ученик должен

знать/понимать3

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

  • вероятностный характер различных процессов окружающего мира;


Алгебра

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;


Функции и графики

уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций;

  • описывать по графику и в простейших случаях по формуле4 поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;


Начала математического анализа

уметь

  • вычислять производные и первообразные элементарных функций, используя справочные материалы;

  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

  • вычислять в простейших случаях площади с использованием первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;


Уравнения и неравенства

уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

  • составлять уравнения и неравенства по условию задачи;

  • использовать графический метод для приближенного решения уравнений и неравенств;

  • изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • построения и исследования простейших математических моделей;


Элементы комбинаторики, статистики и теории вероятностей

уметь

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков;

  • анализа информации статистического характера;


Геометрия

уметь

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.




  1. Учебно-методический комплект

УМК по алгебре и началам анализа

• Мордкович А. Г. Алгебра и начала математического анализа. 10 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (базовый уровень) / А. Г. Мордкович, П. В. Семенов. — 6-е изд., стер. — М. : Мнемозина, 2009. — 424 с. : ил.
• Алгебра и начала математического анализа. 10 класс В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений (базовый уровень) / [А. Г. Мордкович, Л. О. Денищева, Л. И. Звавич, Т. А. Корешкова, Т. Н. Мишустина, А. Р. Рязановский, П. В. Семенов ] под ред. А. Г. Мордковича. — 4-е изд., испр. — М. : Мнемозина, 2007.
• Алгебра и начала математического анализа. 10 класс В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений (базовый уровень) / [А. Г. Мордкович, Л. О. Денищева, Л. И. Звавич, Т. А. Корешкова, Т. Н. Мишустина, А. Р. Рязановский, П. В. Семенов ] под ред. А. Г. Мордковича. — 6-е изд., стер. — М. : Мнемозина, 2009. — 343 с. : ил.

УМК по геометрии

• Атанасян Л.С. и др. Геометрия. 10-11 классы : учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 20-е изд. — М. : Просвещение, 2010.— 384 с. : ил.
6. Информационно-методические источники

литература для учителя и учащихся (основная и дополнительная, электронные издания (компакт-диски, обучающие компьютерные программы);

интернет ресурсы
По алгебре и началам анализа:
• Мордкович А. Г. Алгебра и начала математического анализа. 10 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (базовый уровень) / А. Г. Мордкович, П. В. Семенов. — 6-е изд., стер. — М. : Мнемозина, 2009. — 424 с. : ил.
• Алгебра и начала математического анализа. 10 класс В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений (базовый уровень) / [А. Г. Мордкович, Л. О. Денищева, Л. И. Звавич, Т. А. Корешкова, Т. Н. Мишустина, А. Р. Рязановский, П. В. Семенов ] под ред. А. Г. Мордковича. — 4-е изд., испр. — М. : Мнемозина, 2007.
• Алгебра и начала математического анализа. 10 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений (профильный уровень) / [А. Г. Мордкович, Л. О. Денищева, Л. И. Звавич, Т. А. Корешкова, Т. Н. Мишустина, А. Р. Рязановский, П. В. Семенов ] под ред. А. Г. Мордковича. — 6-е изд., стер. — М. : Мнемозина, 2009. — 343 с. : ил.

• Глизбург В. И. Алгебра и начала математического анализа. 10 класс. Контрольные работы для учащихся общеобразовательных учреждений (базовый уровень) / В. И. Глизбург ; под ред. А. Г. Мордковича. — М. : Мнемозина, 2009. — 39 с.
• Глизбург В. И. Алгебра и начала математического анализа. 11 класс. Контрольные работы для учащихся общеобразовательных учреждений (базовый уровень) / В. И. Глизбург ; под ред. А. Г. Мордковича. — М. : Мнемозина, 2009. — 32 с. 
• Мордкович А. Г. Алгебра и начала математического анализа. 10— 11 классы (базовый уровень) : методическое • Александрова Л. А. Алгебра и начала математического анализа. 10 класс. Самостоятельные работы для учащихся общеобразовательных учреждений / Л. А. Александрова ; под ред. А. Г. Мордковича. — 4-е изд., испр. и доп. — М. : Мнемозина, 2008. — 127 с. : ил.
• Александрова Л. А. Алгебра и начала математического анализа. 11 класс. Самостоятельные работы для учащихся общеобразовательных учреждений / Л. А. Александрова ; под ред. А. Г. Морд-ковича. — 4-е изд., испр. и доп. — М. : Мнемозина, 2009. — 100 с.пособие для учителя / А. Г. Мордкович, П. В. Семенов. — М. : Мнемозина, 2010. — 202 с. : ил.
По геометрии:

• Атанасян Л.С. и др. Геометрия. 7—9 классы : учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 20-е изд. — М. : Просвещение, 2010.— 384 с. : ил.

• Глазков Ю.А., Юдина И.И., Бутузов В.Ф. Рабочая тетрадь по геометрии для 10 класса. -4 изд. - М., Просвещение, 2010. - 100с
• Бутузов В.Ф., Глазков Ю.А., Юдина И.И. Рабочая тетрадь по Геометрии для 11 класса. -М., Просвещение, 2010. - 82 с

• Зив Б.Г. Геометрия. Дидактические материалы. 10 класс / Б. Г. Зив. — 10-е изд. — М. : Просвещение, 2009. — 159 с. : ил.
• Геометрия : дидакт. материалы для 11 кл. / Б. Г. Зив. — 10-е изд. — М. : Просвещение, 2008. — 128 с. : ил. 

• Саакян С. М. Изучение геометрии в 10—11 классах: кн. Для учителя / С. М. Саакян, В. Ф. Бутузов.— 4-е изд.,дораб.— М. : Просвещение, 2010.— 248 с. : ил.
• Зив Б.Г. Задачи к урокам геометрии. 7-11 классы. — С.-Петербург, 1998. НПО «Мир и семья-95» . - 624 с: илл
• Зив Б. Г. и др. Задачи по геометрии: Пособие для учащихся 7—11 кл. общеобразоват. учреждений - Изд.: Просвещение, 2003, 271 cтр.

• Рогулева А. В. Геометрия. 10 класс. Рабочая тетрадь: В 2 ч. Ч. 1-2 - Саратов: Лицей, 2005. - 80 с. + 80 с.

• Геометрия. Готовимся к ЕГЭ. 11 класс. Литвиненко В.Н. - М.: 2012. - 160 с.
Дополнительно:

Информационно - методические источники.doc

Информационно - методические источники.doc

http://mathege.ru:8080/or/ege/Main



http://alexlarin.com/

1 Курсивом в тексте выделен материал, который подлежит изучению, но не включается в Требования к уровню подготовки выпускников.

2 Курсивом в тексте выделен материал, который подлежит изучению, но не включается в Требования к уровню подготовки выпускников.

3 Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.

4 Требования, выделенные курсивом, не применяются при контроле уровня подготовки выпускников профильных классов гуманитарной направленности.

Похожие:

Программа по математике среднего (полного) общего образования iconПрограмма среднего (полного) общего образования по математике базовый уровень
Примерная программа по математике составлена на основе федерального компонента государственного стандарта среднего (полного) общего...
Программа по математике среднего (полного) общего образования iconПримерная программа среднего (полного) общего образования по математике базовый уровень пояснительная записка статус документа
Примерная программа по математике составлена на основе федерального компонента государственного стандарта среднего (полного) общего...
Программа по математике среднего (полного) общего образования iconРабочая программа учебного предмета «Алгебра и начала математического анализа»
Государственного стандарта среднего (полного) общего образования на основе Примерной программы среднего (полного) общего образования...
Программа по математике среднего (полного) общего образования iconСтандарт среднего (полного) общего образования по математике
Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей
Программа по математике среднего (полного) общего образования iconСтандарт среднего (полного) общего образования по математике
Изучение математики на профильном уровне среднего (полного) общего образования направлено на достижение следующих целей
Программа по математике среднего (полного) общего образования iconПрограмма среднего (полного) общего образования на профильном уровне
Примерная программа по математике составлена на основе федерального компонента государственного стандарта среднего (полного) общего...
Программа по математике среднего (полного) общего образования iconПримерная программа среднего (полного) общего образования на профильном уровне математика пояснительная записка Статус документа
Примерная программа по математике составлена на основе федерального компонента государственного стандарта среднего (полного) общего...
Программа по математике среднего (полного) общего образования iconРабочая программа по алгебре и началам математического анализа (базовый уровень) составлена на основе: федерального компонента Государственного образовательного стандарта среднего (полного) общего образования по математике
Федерального компонента Государственного образовательного стандарта среднего (полного) общего образования по математике (алгебра...
Программа по математике среднего (полного) общего образования iconРабочая программа для среднего (полного) общего образования
Федерального компонента государственного стандарта среднего (полного) общего образования по географии (базовый уровень) 2004 г
Программа по математике среднего (полного) общего образования iconИ. О. Директора маоу
Программа составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования на профильном...
Разместите кнопку на своём сайте:
docs.likenul.com


База данных защищена авторским правом ©docs.likenul.com 2015
обратиться к администрации
docs.likenul.com